IKr Impact on Repolarization and Its Variability Assessed by Dynamic Clamp.
نویسندگان
چکیده
BACKGROUND Repolarization and its stability are exquisitely sensitive to IKr features. Information on the relative importance of specific IKr abnormalities is missing and would assist in the evaluation of arrhythmogenic risk. METHODS AND RESULTS In single guinea-pig myocytes, endogenous IKr was replaced by modeled IKr (mIKr) by dynamic clamp (DC) at a cycle length of 1 s. mIKr parameters were systematically modified, and the resulting changes in action potential duration (APD) and its short term variability (SD1) were measured. We observed that (1) IKr blockade increased SD1 more than expected by its dependency on APD; (2) mIKr completely reversed APD and SD1 changes caused by IKr blockade; (3) repolarization was most sensitive to inactivation shifts, which affected APD and SD1 concordantly; (4) activation shifts of the same magnitude had marginal impact on APD, but only when reducing mIKr, they significantly increased SD1; (5) changes in maximal conductance resulted in a pattern similar to that of activation shifts. CONCLUSIONS The largest effect on repolarization and its stability are expected from changes in IKr inactivation. APD is less sensitive to changes in other IKr gating parameters, which are better revealed by SD1 changes. SD1 may be more sensitive than APD in detecting IKr-dependent repolarization abnormalities.
منابع مشابه
Role of potassium currents in the repolarization of canine left ventricular cardiomyocytes
Potassium currents flowing during a ventricular action potential contribute to the repolarization of the cell membrane, however the exact role of each current has not been cleared yet. Although there are many studies in this topic most of them were carried out with conventional voltage-clamp technique. With this method only presumptions can be made regarding a current flowing during an action p...
متن کاملThe Electrogenic Na+/K+ Pump Is a Key Determinant of Repolarization Abnormality Susceptibility in Human Ventricular Cardiomyocytes: A Population-Based Simulation Study
Background: Cellular repolarization abnormalities occur unpredictably due to disease and drug effects, and can occur even in cardiomyocytes that exhibit normal action potentials (AP) under control conditions. Variability in ion channel densities may explain differences in this susceptibility to repolarization abnormalities. Here, we quantify the importance of key ionic mechanisms determining re...
متن کاملSuppression of the hERG potassium channel response to premature stimulation by reduction in extracellular potassium concentration
Potassium channels encoded by human ether-à-go-go-related gene (hERG) mediate the cardiac rapid delayed rectifier K(+) current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature stimuli late in repolarization and early in diastole. Ionic current carried by hERG channels (IhERG) is known to exhibit a paradoxical dependence on external pot...
متن کاملPropafenone and its metabolites preferentially inhibit IKr in rabbit ventricular myocytes.
Propafenone is an antiarrhythmic agent with recognized cardiac myocyte repolarizing K+ current inhibitory effects. It has two known electropharmacologically active metabolites, 5-hydroxy- and N-depropylpropafenone, whose K+ current inhibitory effects are less thoroughly elucidated than those of the parent compound. This study characterizes and directly compares the pharmacologic interaction of ...
متن کاملFunctional Cross-Talk between the α1- and β1-Adrenergic Receptors Modulates the Rapidly Activating Delayed Rectifier Potassium Current in Guinea Pig Ventricular Myocytes
The rapidly activating delayed rectifier potassium current (IKr) plays a critical role in cardiac repolarization. Although IKr is known to be regulated by both α1- and β1-adrenergic receptors (ARs), the cross-talk and feedback mechanisms that dictate its response to α1- and β1-AR activation are not known. In the present study, IKr was recorded using the whole-cell patch-clamp technique. IKr amp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2015